I believe students need to be exposed to the full range of research strategies that the study of architecture demands. Writing research papers based on other texts or case studies from monographs is not enough. New knowledge is generated through the documentation and analysis of what has been built and through the design of what could be built. How we house ourselves sustainably and the longevity of our housing stock should be critical concerns to all those responsible for the design and construction of the built environment.

Row houses offer a more sustainable and viable alternative to the current development of single-family detached houses in the United States. By removing the underutilized five-foot side “yards” between the typical contemporary detached houses, row houses can increase density. By sharing walls with neighboring houses, row houses reduce the amount of energy required to heat and cool. At the same time, row houses still provide many of the amenities home-owners seek in a single family detached house. These include ownership of both the property and building, attached garages, backyards, adequate privacy, and multiple stories.

The architectural studio environment provides a working laboratory where students have the opportunity to test ideas about row housing including dimension, assembly and response to climate. The studio will be broken up into two phases. The first will be to document row housing in the Pacific Northwest and beyond, both from the first half of the 20th century and contemporary examples. Specific neighborhoods and projects have been identified in Portland and other locations. Through documenting existing row houses and neighborhoods, noting how alterations have been made and analyzing the plans, sections and assembly methods, students will learn that the existing built environment offers lessons to architects today if we look beyond the glossy photos of elevations. This phase will occur over the first two weeks of the studio.

In the second, and more experimental, phase of the studio, each student will design a series of row houses within a given a set of parameters. The three parameters will be climate, lot width and assembly system. Each student will be assigned a different combination of the three parameters, creating a matrix of row house designs. Throughout the design process students will be given design exercises to test the opportunities for longevity embedded in their row houses. For example, how can one unit be converted into two? How can a bedroom be added? How can a commercial space be inserted into the row house? How does a single prototype fulfill the needs of multiple users? Through these controlled experiments, students will be able to see the influence of the three parameters on row house design and propose a new set of strategies for accommodating incremental change. As a group, we will be able to conduct architectural research that would otherwise be impossible.