ARCH 410/510 BUILDING INFORMATION MODELING, REVIT

Winter Term 2015
Saturday Workshops: Jan 10th & 17th, 8am-5pm (with lunch break)
Weekly Instruction: Thursdays, 6pm-7:50pm
White Stag Building, Room 374 (Computer Lab)
2 Credits, Pass/No Pass

DESCRIPTION
This course provides students with a broad introduction to the Revit software as an example of a Building Information Modeling (BIM) tool. Through lab activities, students will learn Revit techniques for conceptual design through construction documentation, including:

» Parametric modeling;
» Design documentation;
» Rendering workflows;
» and data input and analysis.

Through lectures and discussions, students will learn how the model can be used during for design coordination, construction administration, and even post-occupancy.

GOALS
» Understand the characteristics of and uses for a Building Information Model and how the BIM process differs from other 2D and 3D architectural documentation processes.
» Develop an intermediate skill level in Revit, sufficient to successfully model and document a student project as well as to attain an entry-level architectural internship.
» Create a portfolio entry or work sample to demonstrate Revit knowledge to future employers.

MATERIALS
SOFTWARE
Revit Architecture 2015 will be installed on all computers in the computer lab and is available free to students at Autodesk’s website. The software runs on Windows only, but can be run on Mac computers via Bootcamp.

REQUIRED TEXT
Autodesk Revit Architecture 2015: No Experience Required by Eric Wing

EXPECTATIONS AND ASSESSMENT
Under the UO quarter system, each undergraduate credit reflects approximately thirty hours of student engagement (x2=60 hrs for this course). Graduate students are expected to perform work of higher quality and quantity, typically with forty hours of student engagement for each credit hour (x2=80 hrs for this course). Assignment requirements and evaluation criteria will be adjusted accordingly.

ATTENDANCE AND PARTICIPATION
Attendance is vital to student success in this course. As such, attendance and participation accounts for a large portion of the grade (see below). Students are expected to attend class, stay on task, and complete in-class assignments in order to receive this credit.

Attendance is mandatory for both Saturday workshops. A missed workshop constitutes loss of the entire attendance portion of the grade.

TERM PROJECT AND ASSIGNMENTS

The best way to learn Revit is to use it. Students will model and document a small building using Revit with check-ins on a bi-weekly basis. Students currently enrolled in studio courses may use their studio project (or a portion thereof) as their term project building but are advised to consider the learning curve associated with Revit before deciding to do so. The course will culminate in a pin-up of these term projects.

Late check-in assignments will be accepted for reduced credit:

- **< 1 day late**: -5%
- **1-7 days late**: -20%
- **> 7 days late**: -30%

ASSESSMENT BREAKDOWN

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and Participation</td>
<td>20%</td>
</tr>
<tr>
<td>Term Project Check-Ins</td>
<td>50% (5 check-ins, 10% each)</td>
</tr>
<tr>
<td>Term Project Final Pin-up</td>
<td>30%</td>
</tr>
</tbody>
</table>

GRADING POLICY

<table>
<thead>
<tr>
<th>Grade</th>
<th>Undergraduates</th>
<th>Graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>70% (C-) or above</td>
<td>80% (B-) or above</td>
</tr>
<tr>
<td>No Pass</td>
<td>69% (D+) or below</td>
<td>79% (C+) or below</td>
</tr>
</tbody>
</table>